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Abstract

A series representation for the Riemann zeta function in terms of the falling
Pochhammer symbol is derived from the polynomial representation of the Gauss-
Kuzmin-Wirsing (GKW) operator.

1 Introduction

The Gauss-Kuzmin-Wirsing operator [Kuz28, Wir74, Ba78a] occurs in the theory of
continued fraction representations of the real numbers. The zeroth eigenvalue of this
operator is related to the Gauss-Kuzmin distribution [ref], giving the likelihood of the
occurrence of an integer in the continued-fraction expansion of an “arbitrary” real num-
ber. The GKW operator is interesting in other ways, notably in its relationship to
the Minkowski Question Mark function, and thus its symmetryunder the action of a
monoid sub-semi-group of the modular groupSL(2,Z). Except for the zeroth eigen-
vector, there is no known closed-form solution of the GKW operator, although the
eigenvalues may be computed relatively easily through standard matrix diagonaliza-
tion techniques.

In this paper, a relationship to the Riemann zeta function [Ed74] is noted, allowing
the easy derivation of a series expansion of the zeta function in terms of the Pochham-
mer symbols (the falling factorials), or equivalently the binomial coefficients. Specifi-
cally, the expansion given is

ζ(s) =
s

s−1
−s

∞

∑
n=0

(−)n
(

s−1
n

)
tn (1)

Here, the constantstn play a role analogous to the Stieltjes constants, and can be given
in a simple, finite-term closed form, involving the Riemann zeta function at integer
values and the Euler-Mascheroni constant.

Thetn may be used to express the Stieltjes constants as a sum involving the Stirling
numbers. Thetn are very well behaved, becoming small quite rapidly. Some exact
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expressions can be derived for various sums involving theseconstants. A numerical
exploration of their values is also performed, from which the limiting behavior is con-
jectured.

The first section defines the GKW operator in simple terms, as the transfer operator
of the Gauss map. The second section briefly reviews some of the properties of the
GKW operator, and the third section provides several polynomial representations. The
fourth section obtains the series expansion for the zeta. The fifth section explores the
values of the constantstn.

2 The Gauss-Kuzmin-Wirsing Operator

Successive terms of a continued fraction fraction expansion for a real numberx may be
obtained by iterating on the function

h(x) =
1
x
−
⌊

1
x

⌋
(2)

This function maps the unit interval onto itself, and is sometimes called the Gauss map.
It is connected to the Riemann zeta function by a Mellin transform:

ζ(s) =
1

s−1
−s

Z 1

0
h(x)xs−1dx (3)

In the theory of iterated functions, the behavior of a map maybe studied by means
of the “transfer operator”, sometimes called the Frobenius-Perron operator of a map
[Rue94]. Given a map of the unit interval onto itself, the transfer operator describes
how a distribution on the unit interval behaves under the action of the map, thus giving
an broader view of iteration. In particular, the transfer operator can act as a bridge
between the fractal properties typically seen when iterating a function, and analytic
descriptions of the same process. This is because transfer operators can be repre-
sented both on the space of smooth, differentiable functions, as well as spaces of non-
differentiable functions.

By using a set of smooth, differentiable, orthonormal basisfunctions on the unit
interval, such as orthogonal polynomials, the matrix elements of a transfer operator
can often be explicitly computed, and the operator itself can be diagonalized, using
standard techniques from the theory of Hilbert spaces and functional analysis.

There are a variety of equivalent definitions for the transfer operator, of varying
degrees of sophistication. One simple definition is

[Uhρ] (x) =

Z

dyδ(x−h(y)) ρ(y) (4)

Here,h is the function being iterated, whileρ is some density on which the transfer
operatorUh acts. The subscript onUh is used to emphasize that the transfer operator
is associated with the function being iterated. In this expression,δ is understood to be
the Dirac delta function. As can be seen, as iteration maps one point to another, the
transfer operator describes how the density is mapped.
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A more abstract definition may be given. Leth : X → X be a map from an arbitrary
setX onto itself. Letρ : X → C be a valuation of that set on the complex numbersC,
and letR be the space of all such valuationsρ. Then the transfer operatorUh is a linear
functional on the spaceR , that is,Uh : R → R , acting as

[Uhρ] (x) = ∑
y∈h−1(x)

ρ(y) (5)

Rather than studyingUh acting on the whole spaceR , it is often insightful to represent
Uh acting only on a subspace. For example, whenX is the unit interval, one may
consider only the space of (finite) polynomials, or the spaceof analytic functions, or
the space of square-integrable functions, etc.

For the Gauss map, the transfer operator is known as the Gauss-Kuzmin-Wirsing
(GKW) operator, and has the representation [Khi35]

[Uhρ] (x) =
∞

∑
n=1

1
(n+x)2 ρ

(
1

n+x

)
(6)

The definition 4 can be loosely viewed as a kind of change-of-variable. This change-
of-variable can be performed on equation 3, the order of integration exchanged, and
the Gauss map replaced by its transfer operator. One obtainsthe operator equation

ζ(s) =
s

s−1
−s

Z 1

0
dx x

[
Uhxs−1] (7)

Although the above equation 7 is easy enough to derive, a proper, rigorous examination
of its validity requires a deep study of topics in functionalanalysis, topics outside the
scope of this paper. Wirsing does present some arguments concerning the existence
and analyticity of the eigenvectors of this operator; however, the arguments are specific
to this operator and do not draw on any general theory [Wir74].

This expression of the Riemann zeta function in terms of the GKW operator moti-
vates a deeper study to the GKW operator, and of transfer operators in general. Most
curiously, continued fractions have a variety of interesting connections to the modular
groupSL(2,Z), and indeed, the modular group can be viewed as a symmetry group of
the dyadic tree representation of the unit interval afforded by both the binary numbers
and the Farey numbers. Thus, one is lead to ask if the Riemann Hypothesis (RH) can
be deduced from a set of symmetries/invariances ofSL(2,Z) acting on the unit interval,
and, in particular, the symmetries of operators that commute with the GKW operator.

A complete analysis of the GKW operator [Ba78a] has never been given, and ap-
pears to be difficult at many levels. The operator has one well-known eigenvector,
ρ(x) = 1/(1+ x), called the Gauss distribution, as it was known to Gauss. It corre-
sponds to the unit eigenvalue. A closed form for the other eigenvectors is not known.
The next eigenvalue has the approximate valueλ1 ≈ 0.3036630029... and is known as
the Gauss-Kuzmin-Wirsing constant; it gives the rate of (exponential) convergence of
distributions of continued fraction expansions to the Gauss distribution.

The author has attempted a computer-guided search for a closed-form solution in
terms of a simple linear combination of products of common special functions, in-
cluding the factorial, the digamma, and Bessel functions. No solution was found; it is
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not clear that the eigenvectors have any simple solution in terms of common special
functions.

XXX Todo: Give the Riemann Hypothesis as a vector equation.

3 Assorted Algebraic Identities

The action of the GKW operator can be computed explicitly fora variety of simple
functions. This section lists an assortment of random algebraic results, none particu-
larly deep, although many are suggestive in various ways. These are listed here mostly
for the sake of completeness.

Adjacent terms in the series can be made to cancel by shiftingthe series by one:

[Uh f ] (x)− [Uh f ] (x+1) =
1

(1+x)2 f

(
1

1+x

)
(8)

which holds for any functionf (x). Thus, if ρ(x) is an eigenvector, so thatUhρ = λρ,
then it would also solve

1
(1+x)2 ρ

(
1

1+x

)
= λ(ρ(x)−ρ(x+1)) (9)

This can be solved easily to get the zeroth eigenvector

ρ0(x) =
1

ln2
1

1+x
(10)

which satisfies[Uhρ0](x) = ρ0(x) and the normalization is given by requiring

Z 1

0
ρ0(x)dx= 1 (11)

A reflection identity is given byf (x) = 1− (1+x)−2 which satisfiesUh f = 1− f .
A hint of the relation to the modular group is given by simple identities involving

the Minkowski Question Mark function ?(x):

Uh[(1+?(x))/(1+x)2] = 1−?(x) (12)

The Minkowski Question Mark function is an isomorphism of dyadic trees; specifically
the binary tree that represents the real numbers as a binary expansion, and the Stern-
Brocot or Farey tree, the binary tree that represents the real numbers by the rational
numbers. In this context, its important to keep in mind that the modular groupSL(2,Z)
is the group of symmetries or hyperbolic rotations of binarytrees, and that the Question
Mark enjoys a set of fractal self-similarities under the action of the modular group.
Another question mark identity is

Uh[?(x)x−2] = 2−?(x) (13)
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Additional identities may be constructed in this vein, for example:

Uh

[
?(x)

(
1

(1+x)2 −2

)]
=

?(x)−2
(1+x)2 (14)

but these types of exercises do not seem to lead to any sort of obviously worthwhile
recurrence relations; a deeper analysis of symmetries is required.

Acting on the monomial, one gets

[Uhxs] (x) =
∞

∑
n=1

1
(n+x)s+2 = ζH(s+2,1+x) (15)

whereζH(s,q) is the Hurwitz zeta function. For positive integers = k, one has that
ζH(k+ 1,x) = (−1)k+1ψ(k)(x)/k! whereψ(k)(x) is the polygamma function, thek’th
derivative of the gamma function. For negative integers, one gets the Bernoulli poly-
nomials: ζH(−n,x) = −Bn+1(x)/(n+ 1). As a variation, one has curiosities such
as f (x) = (1+ ax)2 giving Uh f = ψ(1)(1+ x+ a) and f (x) = (1+ nx)−2 − 1 giving
Uh f = −∑n

k=1(x+k)−2 (this last being a finite sum).
The relatively simple expressions involving the Hurwitz zeta and the Minkowski

question mark function again strongly hint that the modulargroup is deeply involved
in the correct theory of the GKW operator. For example, the Bernoulli mapb(x) =
2x−⌊2x⌋, when iterated, gives the binary digits of the real numberx. The transfer
operator of the Bernoulli map is exactly solvable: the eigenfunctions are the Bernoulli
polynomials, and more generally, the Hurwitz zeta function.

In closing, one teasing hint of the relationship between period-doubling and the
GKW is this curious representation of the zeroth eigenvector as a sum over progres-
sively smaller intervals:

1
1+x

=
∞

∑
n=1

1
2n

[
2

x+n
− 1

x+n+1

]
(16)

4 Polynomial Representation

The search for analytic solutions to the GKW operator beginswith a specification of
the operator in a polynomial basis. To that end, a natural first choice is to consider a
representation in terms of the monomialsxn or equivalently, a Taylor expansion about
x = 0. This proves to be an unfortunate choice, as will become clear; The GKW oper-
ator appears to have some sort of singularity associated with the pointx = 0. Writing
Uh f = g and substituting a Taylor’s expansion forf andg, one finds

g(m)(0)

m!
=

∞

∑
k=0

f (k)(0)

k!
(−)m (k+m+1)!

m! (k+1)!
ζ(k+m+2) (17)

The operator matrix elements can be immediately [May91] read off to be

[Uh]mk = (−1)m
(

k+m+1
m

)
ζ(k+m+2) (18)

5



where the factorials are replaced by the binomial coefficient that they form. Unfortu-
nately, this is a poorly conditioned matrix, with a rapidly increasing matrix elements
and a trace that does not converge. Progress may be made by applying a regulator
and using Levin-type sequence acceleration techniques[ref]. This leads to a number
of curious identities, some of which were listed previously. However, the difficulty of
working with divergent sums seems to outweigh any advantages given by the relatively
simple form of the matrix elements.

Presuming that there is some sort of singularity atx= 0, one may try expansions at
different locations. Thus, considerf (x) = ∑∞

n=0 f (n)(a)(x−a)n/n! andg(x) likewise
expanded aboutx = b. With this expansion, the operator relationUh f = g becomes

g(m)(b)

m!
=

∞

∑
n=0

U (b,a)
mn

f (n)(a)

n!
(19)

Without much difficulty, one discovers that the matrix elements are given by

U (b,a)
mn = (−1)m

n

∑
k=0

(−a)n−k
(

n
k

)(
k+m+1

m

)
ζH(k+m+2,1+b) (20)

whereζH(s,q) is the Hurwitz zeta function:

ζH(s,q) =
∞

∑
n=0

1
(n+q)s (21)

Substitutinga = b = 1/2, one obtains the well-known expansion of [Br03], which is

U (1/2,1/2)
mn = (−1)m

n

∑
k=0

(−1
2

)n−k(
n
k

)(
k+m+1

m

) [
2m+k+2 (ζ(k+m+2)−1)− ζ(k+m+2)

]

(22)

A simpler expression is obtained by expanding abouta = b = 1, and the matrix is
rather well-conditioned and easier to work with. It is:

Gmn =
n

∑
k=0

(−1)k
(

n
k

)(
k+m+1

m

)
[ζ(k+m+2)−1] (23)

which satisfies

(−)mg(m)(1)

m!
=

∞

∑
n=0

Gmn(−)n f (n)(1)

n!
(24)

The above will be the most convenient for expressing the Riemann zeta, and will be
used in the next section.

All of these expressions for the matrix elements for the GKW operator have a com-
mon form. It consists of two summations: the outer summation, and the summation
defining the Hurwitz zeta function. Pulling out this second summation, one finds terms
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consisting of a series of polynomials, which are most simplyexpressed in terms of
Gauss’ hypergeometric series:

Γmn(x) ≡ (m+1)2F1

[
−n m+2

2
; x

]
=

n

∑
k=0

(
n
k

)(
k+m+1

m

)
(−x)k

(25)

These have a curious superficial resemblance to the shifted Legendre polynomial

P̃n(x) ≡
n

∑
k=0

(
n
k

)(
k+n

n

)
(−x)k (26)

Switching the order of summation in equation 20 gives the following:

U (b,a)
mn = (−1)m+nan

∞

∑
j=0

1
( j +1+b)m+2 2F1

[
−n m+2

2
;

−1
a( j +1+b)

]
(27)

Oddly, this appears to be in the form of a slightly generalized form of the GKW
operator, the Ruelle-Mayer operator [May91],

[
U (s) f

]
(x) ≡

∞

∑
n=1

1
(n+x)s f

(
1

n+x

)
(28)

wheres is taken to bes= m+2 and f =2 F1. The general appearance and the matrix
elements of the Ruelle-Mayer operator are only a slight variation of those for the GKW;
and, for completeness, these are:

[
U (s)

](b,a)

mn
= (−1)m

n

∑
k=0

(−a)n−k
(

n
k

)(
m+k+s−1

m

)
ζH(m+k+s,1+b)

(29)

The corresponding hypergeometric identity that comes intoplay is

n

∑
k=0

(−x)k
(

n
k

)(
m+k+s−1

m

)
=

(
m+s−1

m

)
2F1

[
−n m+s

s
; x

]

(30)

As a final note, recall that the Hurwitz zeta may be expressed as the polygamma
function for integer arguments, and that the polygamma functions are the chain of log-
arithmic derivatives of the gamma function. Thus, one may also expresses the matrix
elements ofU in the curious form

U (b,a)
mn =

(−a)n+1

m!

n

∑
k=0

(
n
k

)(
1
a

)k+1 1
(k+1)!

dk+1

dxk+1 ψ(m)(1+b) (31)

Here, the curious operator making an appearance is

[Pn,y f ] (x) =
n

∑
k=0

(−y)k
(

n
k

)
f (k)(x)

k!
(32)
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where f (k)(x) is thek’th derivative of f at x. The operatorPn,yis upper-triangular, with
all eigenvalues equal to 1, and all eigenvectors being polynomials (or analytic series
for n not an integer).

5 The Riemann Zeta and Stieltjes Constants

Inserting the representation 23 into the integral expression 7 for the Riemann zeta gives

ζ(s) =
s

s−1
−s

∞

∑
m=0

∞

∑
n=0

Gmn(−)n

(m+1)(m+2)

(
s−1

n

)
(33)

This expression may be considerably simplified. Several of the sums appearing in
equation 33 may be performed explicitly. Usingtnto denote the intermediate sum, one
may write

ζ(s) =
s

s−1
−s

∞

∑
n=0

(−)n
(

s−1
n

)
tn (34)

It is not to difficult to verify that thetntake the form

tn =
∞

∑
m=0

Gmn

(m+1)(m+2)

= 1− γ+
n

∑
k=1

(−)k
(

n
k

)[
1
k
− ζ(k+1)

k+1

]
(35)

Here,γ = 0.577... is the Euler-Mascheroni Constant. For largen, one finds thattn →
1/2(n+1), motivating the definition of

an = tn−
1

2(n+1)
(36)

so that the Riemann zeta may be written as

ζ(s) =
s

s−1
− 1

2
−s

∞

∑
n=0

(−)n
(

s−1
n

)
an (37)

Writing the binomial coefficient as

(
s−1

n

)
= (s−1)n/n! where(x)n is the falling

Pochhammer symbol, its clear that thean play the analogue of the Stieltjes constants for
this kind of Umbral, “divided differences” Newton-type equation. Unlike the Stieltjes
constants, thean have a simple, finite expression. For example, the first few may be
written as

a0 =
1
2
− γ (38)

a1 =
ζ(2)

2
− γ− 1

4
(39)

a2 = ζ(2)− ζ(3)+2
3

− γ (40)

a3 =
3
2

ζ(2)− ζ(3)+
ζ(4)

4
− 23

24
− γ (41)
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and so on. Numerically, thean are small, and seem to be bounded and oscillatory. A
detailed numerical analysis of these values is given in the next section.

Identities useful in the course of the manipulations neededto derive the above in-
clude

Hn =
n

∑
m=1

1
m

= −
n

∑
k=1

(−1)k

k

(
n
k

)
(42)

and

−
n

∑
k=0

(−x)k+1

k+1

(
n
k

)
=

1− (1−x)n+1

n+1
(43)

This last identity is useful for partially resumming equation 35 to improve convergence
in numerical calculations.

Theanappear naturally in the Taylor’s expansion for the Gamma function, and so
one finds, with little difficulty, the generating function

α(z) =
∞

∑
n=0

anzn

=
1

1−z
+

ln(1−z)
z

(
1

1−z
− 1

2

)
+

1
z

lnΓ
(

1
1−z

)
(44)

The above may be obtained by the straightforward application of equation 6.1.33 from
Abramowitz and Stegun [AS64]. This representation shows a complicated structure.
There is a cut (from the logarithm) extending to the right for1 < z. In the cut there are
poles (from the gamma function) at−n = 1/(1−z), that is, atz= 1+1/n, accumulat-
ing to atz= 1. There appears to be a simple zero atz= ∞. The radius of convergence
of the series involving theanis one. As will be seen in the next section, thean are
oscillatory and exponentially decreasing, and so the sum atz= 1is convergent. One
has:

∞

∑
n=0

an = ln
√

2π−1 = −0.081061466795327... (45)

which can be obtained from Sterling’s asymptotic expansionfor the gamma function,
and

∞

∑
n=0

an2−n = 2−3ln2= −0.079441541679836... (46)

An exponential generating function is given by

∞

∑
n=0

an
zn

n!
=

1
2z

+ez

[
1− γ−Ein(z)− 1

z

(
1
2

+
∞

∑
k=2

(−z)k

k!
ζ(k)

)]
(47)
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where Ein(z) is the entire exponential integral:

Ein(z) = −
∞

∑
k=1

1
k

(−z)k

k!
= e−z

∞

∑
n=1

Hn
zn

n!
(48)

andHn are the harmonic numbers.
Its equally curious that other variations on the expressiongiven in 37 are even more

trivial, namely, one has

∞

∑
n=0

(−)n
(

s−1
n

)
xn =

∞

∑
n=0

(−)n(s−1)n
xn

n!
= (1−x)s−1 (49)

where(s)n = s(s−1)(s−2)...(s−n+1) is the falling factorial. One is left to wonder
what the function

µ(s;x) =
s

s−1
− 1

2
−s

∞

∑
n=0

(−)n
(

s−1
n

)
anxn (50)

might be like; it is presumably related to the Polylogarithm(Jonquiere’s function)
XXXX Do the scratching needed to get the relationship naileddown. Ugh. The general
idea of replacing power series by series in rising or fallingPochhammer symbols and
then exploring the curious relationships that result is referred to as Umbral Calculus; it
seems that a number of interesting relationships can be obtained in this way.

6 Numerical Analysis

The equation 36 is very conducive to numerical analysis. Thevalues of the zeta func-
tion for small integers are known to millions of digits; Plouffe has given a series of
very rapidly converging sums for the larger integers[ref].Thus, it becomes possible to
explore the behavior of thean up ton∼ 500 with only a moderate investment in coding
and computer time. Note, however, that in order to get up to these ranges, computations
must be performed keeping hundreds of decimal places of precision, due to the very
large values that the binomial coefficient can take. In the following, calculations were
performed using the GNU Multiple Precision Arithmetic Library [GMP].

The table 1 shows the numerical values of the first few of theseconstants. It appears
that theanare oscillatory, as shown in the figure 1. The values are also very rapidly
decreasing, so that to the first order, that|an| ∼ exp

(
−4

√
n+1

)
. This exponential

decrease is vaguely reminiscent of an exact result from Babenko [Ba78b], and it is
possible that Babenko’s analysis might be applied to yeild amore precise statement of
the results of this section.

The author attempted a numeric fit to the oscillatory behavior of the function. An
excellent fit for thek′th zero is provided by

q(k) = 1.970+
17π
16

k+
π
4

k2 (51)

which appears to fit the zero-crossings to better than a few parts per thousand, at least
for the larger values ofk. Note that the value 17/16 is not meant to imply that this value
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Table 1: Some values ofan
n an

0 -0.077215664901532851...
1 -0.0047486314774196408...
2 0.00036610089349548089...
3 0.00037600730566372326...
4 0.00014301182486231440...
5 3.3997818936021684...e-5
6 -4.8324221220657863...e-7
7 -6.7778497812918602..e-6

This table shows the first few values ofan. These may be easily calculated to high
precision if desired. As is immediately apparent, these getsmall quickly.

Figure 1: Graph of the first few values ofan

This figure shows a graph of the first 140 values ofan normalized by a factor of
exp−4

√
n+1. Oscillation is clearly visible; the period of oscillation is slowly in-

creasing.
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Figure 2: Graph of the log of the amplitudean/sn

This figure shows a graph of− log(an/sn) out throughn ∼ 2000. It is essentially
a graph of the log of the amplitude of the oscillations ofan. Note the absence of
any ’blips’ that would occur if the sinusoidal fit to the data was poor; the sinu-
soidal curvesn models the data remarkably well. This figure also illustrates a fit
to the amplitude. Specifically, the fit curve is given by 3+ 3.6

√
n+1. Note that

this fit fails badly for values ofn . 20 and that for largern, the fit is only good to
3+3.6

√
n+1+ log(an/sn) ≃ 0±0.5 on average.

is truly exact; numerically, the value 1.0625 seems to be theideal fit, and it is written
here as 17/16 in order to be suggestive. This equation is trivially invertible to give the
oscillatory behavior of thean; it is given by

sn = sinπ

(
−1
16

+

√
289
256

+4
(n−1.97)

π

)
(52)

To demonstrate the quality of this fit, the graph 2 showsan divided bysn.
Asymptotically, the amplitude of thean appears to be given by

an ≃ sn exp−
(

3+3.6
√

n+1
)

(53)

However, a more precise fit is strangely difficult. An attemptto numerically fit the data
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with an expression of the form

an ≃ snexp−
(
b+(c+dn)ε) (54)

results in fit parameters ofb = 3.9±1.5 andc = −50±100 andd = 12.87±0.15 and
ε = 0.5±0.007. This fit is not very pleasing; in particular, the true asymptotic behavior
doesn’t seem to set in untiln is larger than several hundred, which is unexpectedly high.

7 A Related Function

Theanmay be further explored by generalizing them to be a functionon the complex
plane, instead of an integer. One such “obvious” and reasonable generalization is

a(s) = 1− γ− 1
2(s+1)

+
∞

∑
k=1

(−)k
(

s
k

)[
1
k
− ζ(k+1)

k+1

]
(55)

By construction, this function interpolates the previous series, so thata(n) = an for
non-negative integersn. This function has a pole ats= −1, and this series expansion
is convergent only forℜs>−1. The figure 3 illustratesa(s) on the imaginary axis; the
graphic 4 illustrates the phase ofa(s) in the upper-right complex plane. A numerical
exploration of this function seems to indicate that the onlyzeros of this function occur
on the real number line.

Of some utility are two identities, valid forℜs> −1:

−
∞

∑
k=0

(
s
k

)
(−y)k+1

k+1
=

1− (1−y)s+1

s+1
(56)

and

∞

∑
k=1

(
s
k

)
(a−1)k

k
=

Z 1

a

1−xs

1−x
dx (57)

For a = 0, the last integral becomes the digamma function; see equation 6.3.22 of
[AS64].

8 Relation to the Stieltjes constants

Thean are can be used to express the Stieltjes constants and vice-versa by re-expressing
the binomial coefficient with a power series, making use of Stirling Numbers. That is,
the polynomial expression is given by

(
s−1

n

)
=

(s−1)n

n!
=

1
n!

n

∑
k=0

[
n
k

]
(s−1)k (58)
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Figure 3:a(s) on the Imaginary Axis

This figure shows the real and imaginary parts ofa(s) along the imaginary axis. The
function appears to be oscillatory. Note that the series expansion converges only with
great difficulty as one goes further out on the imaginary axis.
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Figure 4: Phase ofa(s) on the Complex Plane

This figure shows the phase ofa(s) on the right half of the complex plane, running
along the real-axis from -2 to +62 and the imaginary axis from-24 to about +24. The
ribbing on the left is entirely due to numerical errors, as the sums converge only with
great difficulty. The color scheme is such that black corresponds to−π, green to 0 and
red to+π, on a smooth scale. Thus, the red-to-black color discontinuities, correspond
to a phase change of 2π. Note that these terminate on zeros or poles; in this case, it
appears that there is only one pole, ats= −1, and all others are zeros. In particular, it
appears that all of the zeros occur on the real number line.
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where

[
n
k

]
is the Stirling Number of the First Kind. Substituting in theabove, and

comparing to the standard definition of the Stieltjes constants

ζ(s) =
1

s−1
+

∞

∑
n=0

(−)n

n!
γn(s−1)n (59)

shows thatγ0 = 1/2−a0 = γ and

γk = −kak−1 +(−)kk!
∞

∑
n=k

(−)n an

n!

([
n
k

]
+

[
n

k−1

])
(60)

Note that the Stirling Numbers can be written as a sum over a product of harmonic
numbers. That is,

[
n
k

]
= (−)k−n (n−1)!

(k−1)!
w(n,k−1) (61)

wherew(n,0) = 1 and

w(n,k) =
k−1

∑
m=0

Γ(1−k+m)

Γ(1−k)
H(m+1)

n−1 w(n,k−1−m) (62)

and the Harmonic numbersH(m)
n are given by

H(m)
n =

n

∑
k=1

1
km (63)

This finally allows us to write

γk = −kak +k
∞

∑
n=k

an

n
(w(n,k−1)− (k−1)w(n,k−2)) (64)

and so the factorial factors cancel, leaving only the sum over the crazy product of
harmonics. XXX todo show some of the values of w, esp. along the diagonal. XXX

While on the topic of Umbral relations, the application of Newton’s divided differ-
ences to the Riemann zeta function leads to the curious function

Q(z) =
∞

∑
n=0

(
n+1
z−1

)
[ζ(n+2)−1] (65)

which has the curious properties thatQ(n) = ζ(n) for all integersn ≥ 2. The pole
is absent:Q(1) = 1 andQ(n) = 0 ∀integersn ≤ 0. The analytic structure ofQ(z) is
unclear.
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9 Conclusions

In the above, an expansion for the Riemann Zeta in terms of thefalling factorial was
stumbled upon. The falling factorial is a polynomial ins and takes part in many in-
teresting identities that suggest further exploration. Infact, the polynomial(s−1)n as
well as(s−1)n both fall into a class of functions with share many common properties
with respect to differentiation, exponentiation, translation and the like, and are known
as Sheffer sequences. It seems that it could be interesting to provide a description of
the Riemann zeta expanded in Sheffer sequences; that is, to find thewn, and provide a
general description of the expansion

ζ(s) =
s

s−1
−s

∞

∑
n=0

(−)nwnpn(s−1) (66)

where the polynomialspn(x) form a Sheffer sequence. This undertaking is interest-
ing because there may be one particular Sheffer sequence forwhich the “generalized
Stieltjes constants”wn take on a particularly simple or interesting form. This is already
suggested by the presentation given in this text, where the expression of thean is con-
siderably simpler than most presentations of the traditional Stieltjes constants. Such
work might be made doubly interesting by the fact the theory of Sheffer sequences
often shows up in the theory of lattice paths and tilings, whereas the representation of
the real numbers as p-adics or rationals is essentially a kind of lattice representation
(having a modular group symmetry).

The GKW operator also has an overt relationship to continuedfractions, and thus
to the modular group. it would certainly be interesting to explore how the group struc-
ture manifests itself in the GKW operator, and, in turn, whatthis might imply for the
structure of the Riemann zeta.
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