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Abstract

A series representation for the Riemann zeta function imgesf the falling
Pochhammer symbol is derived from the polynomial repredemt of the Gauss-
Kuzmin-Wirsing (GKW) operator.

1 Introduction

The Gauss-Kuzmin-Wirsing operator [Kuz28, Wir74, Ba78edurs in the theory of
continued fraction representations of the real numberg ZEnoth eigenvalue of this
operator is related to the Gauss-Kuzmin distribution [refifing the likelihood of the
occurrence of an integer in the continued-fraction expmamnsf an “arbitrary” real num-
ber. The GKW operator is interesting in other ways, notahlyts relationship to
the Minkowski Question Mark function, and thus its symmatnder the action of a
monoid sub-semi-group of the modular groB8Q2,Z). Except for the zeroth eigen-
vector, there is no known closed-form solution of the GKW raper, although the
eigenvalues may be computed relatively easily throughdstahmatrix diagonaliza-
tion techniques.

In this paper, a relationship to the Riemann zeta functiaYf& is noted, allowing
the easy derivation of a series expansion of the zeta fumctiterms of the Pochham-
mer symbols (the falling factorials), or equivalently thadmial coefficients. Specifi-
cally, the expansion given is

(= 523-s3 (% ) @

Here, the constantg play a role analogous to the Stieltjes constants, and caivee g
in a simple, finite-term closed form, involving the Riemaretazfunction at integer
values and the Euler-Mascheroni constant.

Thet, may be used to express the Stieltjes constants as a sumimythe Stirling
numbers. Thd, are very well behaved, becoming small quite rapidly. Somacex



expressions can be derived for various sums involving tbesstants. A numerical
exploration of their values is also performed, from which limiting behavior is con-
jectured.

The first section defines the GKW operator in simple term&yasransfer operator
of the Gauss map. The second section briefly reviews someegbritperties of the
GKW operator, and the third section provides several patyiabrepresentations. The
fourth section obtains the series expansion for the zeta.fifth section explores the
values of the constants

2 The Gauss-Kuzmin-Wirsing Oper ator

Successive terms of a continued fraction fraction exparfsioa real numbex may be
obtained by iterating on the function

h(x) == — H 2)

This function maps the unit interval onto itself, and is stimes called the Gauss map.
Itis connected to the Riemann zeta function by a Mellin tfams:

1
Us) =1 s / h(x)¢ 1dx 3)
s—1 0

In the theory of iterated functions, the behavior of a map meystudied by means
of the “transfer operator”, sometimes called the Frobefason operator of a map
[Rue94]. Given a map of the unit interval onto itself, thenster operator describes
how a distribution on the unit interval behaves under theaaif the map, thus giving
an broader view of iteration. In particular, the transfeeigtor can act as a bridge
between the fractal properties typically seen when itegasi function, and analytic
descriptions of the same process. This is because transézators can be repre-
sented both on the space of smooth, differentiable funstias well as spaces of non-
differentiable functions.

By using a set of smooth, differentiable, orthonormal bésitions on the unit
interval, such as orthogonal polynomials, the matrix eletm®f a transfer operator
can often be explicitly computed, and the operator itseff ba diagonalized, using
standard techniques from the theory of Hilbert spaces amctifunal analysis.

There are a variety of equivalent definitions for the transfgerator, of varying
degrees of sophistication. One simple definition is

Unp) 00 = [ dy3(x—h(y) p(y) @

Here,h is the function being iterated, whileis some density on which the transfer
operatoiUy acts. The subscript ddy, is used to emphasize that the transfer operator
is associated with the function being iterated. In this egpiong is understood to be
the Dirac delta function. As can be seen, as iteration mapspoimt to another, the
transfer operator describes how the density is mapped.



A more abstract definition may be given. tetX — X be a map from an arbitrary
setX onto itself. Letp : X — C be a valuation of that set on the complex numigrs
and letg. be the space of all such valuatigmsThen the transfer operatoy, is a linear
functional on the space , thatis,U,: ® — %, acting as

[Unp] (X) = p(y) (5)
yeh-1(x)

Rather than studyingy, acting on the whole spacg, it is often insightful to represent
Uy acting only on a subspace. For example, wieris the unit interval, one may
consider only the space of (finite) polynomials, or the spzEfcanalytic functions, or
the space of square-integrable functions, etc.

For the Gauss map, the transfer operator is known as the &aizssin-Wirsing
(GKW) operator, and has the representation [Khi35]

hd 1 1
[Unp] (X) = nzlmp (m) (6)
The definition 4 can be loosely viewed as a kind of changeaoiable. This change-
of-variable can be performed on equation 3, the order ofynatiion exchanged, and
the Gauss map replaced by its transfer operator. One oltkergerator equation

s—1

Although the above equation 7 is easy enough to derive, gprogorous examination
of its validity requires a deep study of topics in functioaahlysis, topics outside the
scope of this paper. Wirsing does present some argumentgicong the existence
and analyticity of the eigenvectors of this operator; hasvethe arguments are specific
to this operator and do not draw on any general theory [Wir74]

This expression of the Riemann zeta function in terms of tk\Gperator moti-
vates a deeper study to the GKW operator, and of transfeatgpsrin general. Most
curiously, continued fractions have a variety of interggitonnections to the modular
groupSL(2,7), and indeed, the modular group can be viewed as a symmetuyp gifo
the dyadic tree representation of the unit interval affdridg both the binary numbers
and the Farey numbers. Thus, one is lead to ask if the Riemgpothesis (RH) can
be deduced from a set of symmetries/invariancé&il¢2, 7) acting on the unit interval,
and, in particular, the symmetries of operators that coremith the GKW operator.

A complete analysis of the GKW operator [Ba78a] has neven lggeen, and ap-
pears to be difficult at many levels. The operator has one-kmgllvn eigenvector,
p(x) = 1/(1+x), called the Gauss distribution, as it was known to Gaussoriiee
sponds to the unit eigenvalue. A closed form for the otheemigctors is not known.
The next eigenvalue has the approximate value: 0.3036630029. and is known as
the Gauss-Kuzmin-Wirsing constant; it gives the rate op@mential) convergence of
distributions of continued fraction expansions to the Galistribution.

The author has attempted a computer-guided search for @adcfosm solution in
terms of a simple linear combination of products of commoecsd functions, in-
cluding the factorial, the digamma, and Bessel functions sblution was found; it is

s = —— —s/oldx X[Up 1] 7)



not clear that the eigenvectors have any simple solutioerim$ of common special
functions.
XXX Todo: Give the Riemann Hypothesis as a vector equation.

3 Assorted Algebraic I dentities

The action of the GKW operator can be computed explicitlydorariety of simple
functions. This section lists an assortment of random aljelesults, none particu-
larly deep, although many are suggestive in various wayssé& lare listed here mostly
for the sake of completeness.

Adjacent terms in the series can be made to cancel by shtfimgeries by one:

Unf)09 e 6+ 1 = s (55 ©

which holds for any functiorf (x). Thus, if p(x) is an eigenvector, so thekp = Ap,
then it would also solve

1 1

e (1) A 000 - plc 1) ©

This can be solved easily to get the zeroth eigenvector

1 1
Po(X) = n2 1ox (10)
which satisfiegUnpo] (X) = po(X) and the normalization is given by requiring
1
/ Po(x)dx=1 (11)
0

A reflection identity is given byf (x) = 1 — (1+ x) 2 which satisfies)yf =1 f.
A hint of the relation to the modular group is given by simpalertities involving
the Minkowski Question Mark function(R):

Un[(14+2(x)) /(1 + %)% = 1-2(X) (12)

The Minkowski Question Mark function is an isomorphism oadjc trees; specifically
the binary tree that represents the real numbers as a birpansion, and the Stern-
Brocot or Farey tree, the binary tree that represents tHentemabers by the rational
numbers. In this context, its important to keep in mind thatmodular grousL(2,Z)

is the group of symmetries or hyperbolic rotations of birtaegs, and that the Question
Mark enjoys a set of fractal self-similarities under thei@ttof the modular group.
Another question mark identity is

Un[200x %] = 2-2(x) (13)



Additional identities may be constructed in this vein, faample:

but these types of exercises do not seem to lead to any sobvausly worthwhile
recurrence relations; a deeper analysis of symmetries|isragl.
Acting on the monomial, one gets

[Upx®] (X) = nil (n—i—ij)-()sﬂ =CH(S+2,1+x) (15)

whereln(s,q) is the Hurwitz zeta function. For positive integee k, one has that
Ln(k+1,x) = (=1)<1pM(x) /k! wherep® (x) is the polygamma function, thith
derivative of the gamma function. For negative integerg, gets the Bernoulli poly-
nomials: {n(—n,X) = —Bn11(X)/(N+1). As a variation, one has curiosities such
asf(x) = (14 ax)? giving Upf = M (14 x+a) and f(x) = (1+nx)~2 — 1 giving
Unf = — SR_1(x+Kk) 2 (this last being a finite sum).

The relatively simple expressions involving the Hurwitzazzand the Minkowski
question mark function again strongly hint that the modglaup is deeply involved
in the correct theory of the GKW operator. For example, thenBelli mapb(x) =
2x— |2x|, when iterated, gives the binary digits of the real numbeihe transfer
operator of the Bernoulli map is exactly solvable: the efgantions are the Bernoulli
polynomials, and more generally, the Hurwitz zeta function

In closing, one teasing hint of the relationship betweenogedoubling and the
GKW is this curious representation of the zeroth eigenveasoa sum over progres-
sively smaller intervals:

1 °°1[2 1 } (16)

1+x:nzl? X+n X+n+1

4 Polynomial Representation

The search for analytic solutions to the GKW operator begiitils a specification of
the operator in a polynomial basis. To that end, a naturdldhice is to consider a
representation in terms of the monomiglsor equivalently, a Taylor expansion about
x = 0. This proves to be an unfortunate choice, as will beconma clehe GKW oper-
ator appears to have some sort of singularity associatdudthét pointx = 0. Writing
Unf = g and substituting a Taylor’s expansion fbandg, one finds

gmo) 2 (0 (K+m+1)!

m :kZO @ " m! (k+ 1)!

I(k+m+2) 17)

The operator matrix elements can be immediately [May91d r#fto be

U= 0" (K ) drme2) 18)



where the factorials are replaced by the binomial coeffidieat they form. Unfortu-
nately, this is a poorly conditioned matrix, with a rapidhcreasing matrix elements
and a trace that does not converge. Progress may be made lgingpp regulator
and using Levin-type sequence acceleration techniqugs[rais leads to a number
of curious identities, some of which were listed previoustpwever, the difficulty of
working with divergent sums seems to outweigh any advastgiyen by the relatively
simple form of the matrix elements.

Presuming that there is some sort of singularity at0, one may try expansions at
different locations. Thus, considétx) = S&_, (" (a) (x—a)"/n! andg(x) likewise
expanded abowt= b. With this expansion, the operator relatidpf = g becomes

(M (p © fM(a
m! e n!
Without much difficulty, one discovers that the matrix elerseare given by
(ba) m < n—k( N k+m+1
U™ = (=" (-9 ( K ) ( )ZH(k+ m+2,1+b)  (20)
K=0 m
wheredn (s,q) is the Hurwitz zeta function:
s =y —— 1)
ARG

Substitutinga = b= 1/2, one obtains the well-known expansion of [Br03], which is

m

Ui 22 = (—1)mki<%1>nk< v ) < k+m+1 > [2m+k+2(z(k+m+2)—1)_z(k+m+2)

(22)

A simpler expression is obtained by expanding ateositb = 1, and the matrix is
rather well-conditioned and easier to work with. It is:

G = i(—l)k< " ) ( km+l ) Z(k+m+2)—1] 23)

k=0 m
which satisfies

£V (1)
n!

md™ (D) _ & n
(" = 3 Gnl) (24)
The above will be the most convenient for expressing the Rienrzeta, and will be
used in the next section.

All of these expressions for the matrix elements for the GKpe&rator have a com-
mon form. It consists of two summations: the outer summaiio the summation
defining the Hurwitz zeta function. Pulling out this seconthsnation, one finds terms



consisting of a series of polynomials, which are most simgdpressed in terms of
Gauss’ hypergeometric series:

rmn(X)E(m+1)2F1|: -n 2m+2 ;x] :i}( E ) ( k+$+1 ) (—xk
(25)

These have a curious superficial resemblance to the shiégdridre polynomial

o-f(1)()or

Switching the order of summation in equation 20 gives thimfahg:

ba) _ _gymingne L -n m+2 . -1
U = (-1) aJZO(HHb)MzFl[ , ,a(j+1+b)} (27)

Oddly, this appears to be in the form of a slightly generalifem of the GKW
operator, the Ruelle-Mayer operator [May91],

[u (s)f] (x) = iﬁf (%() (28)

n=

wheresis taken to bes= m+ 2 andf =, F;. The general appearance and the matrix
elements of the Ruelle-Mayer operator are only a slighttim of those for the GKW,
and, for completeness, these are:

[U(S)}:f) = (—1)mki0(—a)"k< E ) ( m+knts_l ) Zu(m+k+s1+b)
(29)

The corresponding hypergeometric identity that comespiag is

ki(_x)k<E)<m+k;s—1>_<m+ms—1)2|:l[ -n Sm+s -

(30)

As a final note, recall that the Hurwitz zeta may be expressatie@polygamma
function for integer arguments, and that the polygammatfans are the chain of log-
arithmic derivatives of the gamma function. Thus, one mayp aixpresses the matrix
elements ol in the curious form

(ba) _ (3" S (n)(})k“ 1 et
Uni” == 2\« J(3) aopiae?" b 6D

Here, the curious operator making an appearance is

L n\ f®(x)
Pl =5 (9( ) (32




wheref ) (x) is thek'th derivative of f atx. The operatoP,is upper-triangular, with
all eigenvalues equal to 1, and all eigenvectors being pohials (or analytic series
for n not an integer).

5 TheRiemann Zeta and Stieltjes Constants

Inserting the representation 23 into the integral expoes‘éifor the Riemann zeta gives
ad Grmn(— s—1
(s (%) 33)
HZOHZO m+ 1)( m+ 2)\ n
This expression may be considerably simplified. Severahefdums appearing in

equation 33 may be performed explicitly. Usitatp denote the intermediate sum, one
may write

_ s hd nf s—1
10 -g5-s3 (%0 ) (34
It is not to difficult to verify that the,take the form
o Gmn
t — o=V
" n; (m+1)(m+2)
n
o4 k(N 1 ((k+1)

Here,y = 0.577... is the Euler-Mascheroni Constant. For largene finds that, —
1/2(n+ 1), motivating the definition of

an=th— m (36)
so that the Riemann zeta may be written as
s 1 2 s-1
=g—+1"5 —SHZO(—) ( n ) an (37)
Writing the binomial coefficient a s; 1y - (s—1)n/n! where(x)y is the falling

Pochhammer symbol, its clear that tygplay the analogue of the Stieltjes constants for
this kind of Umbral, “divided differences” Newton-type egfion. Unlike the Stieltjes
constants, the,, have a simple, finite expression. For example, the first few bea
written as

o = 3y (38)
o = 2oy 2 (39
2 = -2y (40)
s = 2@-1e+ 2y (a1)



and so on. Numerically, tha, are small, and seem to be bounded and oscillatory. A
detailed numerical analysis of these values is given in &xt section.

Identities useful in the course of the manipulations neddeterive the above in-
clude

B A S()

m=1 k=1
and
B n (—x)kﬂ ny 1—(1—x)”+1 43)
kZO k+1 \ k)  n+1

This last identity is useful for partially resumming eqoatB5 to improve convergence
in numerical calculations.

The a,appear naturally in the Taylor's expansion for the Gammation, and so
one finds, with little difficulty, the generating function

0

a(z) = n;)anz”
1 +|n(1—z)( 1 1)+}|nr(iz) (44)

1-z z 1-z 2 z 1-

The above may be obtained by the straightforward applicatf@quation 6.1.33 from
Abramowitz and Stegun [AS64]. This representation showsrapticated structure.
There is a cut (from the logarithm) extending to the right¥at z. In the cut there are
poles (from the gamma function) ain = 1/(1— z), that is, az= 1+ 1/n, accumulat-
ing to atz= 1. There appears to be a simple zeraatw. The radius of convergence
of the series involving theyis one. As will be seen in the next section, theare
oscillatory and exponentially decreasing, and so the sum-=alis convergent. One
has:

Z;an =Inv/2m—1= —0.081061466795327 (45)
n=

which can be obtained from Sterling’s asymptotic expan&wonhe gamma function,
and

%anZ*” =2-3In2=-0.079441541679836 (46)
n=

An exponential generating function is given by
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where Eir{z) is the entire exponential integral:

: 21(-2k L, 2
Einz)=—% - - Ho = 48
S ) @®)

n!
andH, are the harmonic numbers.
Its equally curious that other variations on the expresgioen in 37 are even more
trivial, namely, one has

n=1

i(—)“( S )= 3 ety = (0 (49)
n= n n=0 n

where(s)n = s(s— 1)(s— 2)...(s— n+1) is the falling factorial. One is left to wonder
what the function

() = S%—%—sﬂi(—)“( s 1 )aunxn (50)

might be like; it is presumably related to the Polylogaritkionquiere’s function)
XXXX Do the scratching needed to get the relationship nailedn. Ugh. The general
idea of replacing power series by series in rising or falll@chhammer symbols and
then exploring the curious relationships that result ismefd to as Umbral Calculus; it
seems that a number of interesting relationships can bénelbitan this way.

6 Numerical Analysis

The equation 36 is very conducive to numerical analysis. Vethees of the zeta func-
tion for small integers are known to millions of digits; Pfteihas given a series of
very rapidly converging sums for the larger integers[r&fjus, it becomes possible to
explore the behavior of tha, up ton ~ 500 with only a moderate investment in coding
and computer time. Note, however, that in order to get updedhianges, computations
must be performed keeping hundreds of decimal places ofgiwec due to the very
large values that the binomial coefficient can take. In thiefong, calculations were
performed using the GNU Multiple Precision Arithmetic Laoy [GMP].

The table 1 shows the numerical values of the first few of theastants. It appears
that theanare oscillatory, as shown in the figure 1. The values are adsp rapidly
decreasing, so that to the first order, thaf ~ exp(—4\/n1L 1). This exponential
decrease is vaguely reminiscent of an exact result from BabfBa78b], and it is
possible that Babenko’s analysis might be applied to yeittbae precise statement of
the results of this section.

The author attempted a numeric fit to the oscillatory behavidghe function. An
excellent fit for thek'th zero is provided by

1m 1
q(k) = 1.970+ —=k+ 21k2 (51)

which appears to fit the zero-crossings to better than a fets par thousand, at least
for the larger values d€. Note that the value 17/16 is not meant to imply that thisealu

10



Table 1: Some values af,
an |

-0.077215664901532851.).
-0.0047486314774196408,..
0.00036610089349548089|..
0.00037600730566372326|..
0.00014301182486231440|..
3.3997818936021684...e-5
-4.8324221220657863...e-[7
-6.7778497812918602..e-6
This table shows the first few values af. These may be easily calculated to high
precision if desired. As is immediately apparent, thesesgetll quickly.
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Figure 1: Graph of the first few values af
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This figure shows a graph of the first 140 valuesagfnormalized by a factor of

exp—4v/n+ 1. Oscillation is clearly visible; the period of oscillatids slowly in-
creasing.
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Figure 2: Graph of the log of the amplitudg/s,
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This figure shows a graph oflog(an/sn) out throughn ~ 2000. It is essentially
a graph of the log of the amplitude of the oscillationsagf Note the absence of
any 'blips’ that would occur if the sinusoidal fit to the datasvpoor; the sinu-
soidal curves, models the data remarkably well. This figure also illussaaefit
to the amplitude. Specifically, the fit curve is given by 3.6/n+1. Note that
this fit fails badly for values oh < 20 and that for largen, the fit is only good to
3+3.6vn+1+log(an/sn) ~ 0+ 0.5 on average.

is truly exact; numerically, the value 1.0625 seems to bedeal fit, and it is written
here as 17/16 in order to be suggestive. This equation ialtyiinvertible to give the
oscillatory behavior of thay; it is given by

(-1 [289 (n—197)
S,«.—SII'IT[(E gG"F“-T) (52)

To demonstrate the quality of this fit, the graph 2 shawdivided bys,.
Asymptotically, the amplitude of tha, appears to be given by

an = S exp— (3+ 3.6\/m) (53)

However, a more precise fit is strangely difficult. An attetioptumerically fit the data

12



with an expression of the form
an ~ syexp— (b+ (c+dn)°) (54)

results in fit parameters &f= 3.9+ 1.5 andc = —50+ 100 andd = 12.87+ 0.15 and
€ =0.5+0.007. Thisfit is not very pleasing; in particular, the trueragyotic behavior
doesn’'t seem to setin untilis larger than several hundred, which is unexpectedly high.

7 A Related Function

Thea,may be further explored by generalizing them to be a funatiothe complex
plane, instead of an integer. One such “obvious” and reddemgeneralization is

7 1 ad s\ [1 Qk+1)
a(s)=1-vy- z<s+1>+k;<—>k< k ) {E_ Kt 1 } (55)

By construction, this function interpolates the previoases, so that(n) = a, for
non-negative integers This function has a pole at= —1, and this series expansion
is convergentonly fofls> —1. The figure 3 illustratea(s) on the imaginary axis; the
graphic 4 illustrates the phase afs) in the upper-right complex plane. A numerical
exploration of this function seems to indicate that the aasos of this function occur
on the real number line.

Of some utility are two identities, valid fdis > —1:

< (s (=t 1-(1-yst
_kzo< k) kt1 s+l 56)
and
> /s (a-1)k 11-x8
kzl< K ) K = A 1_de (57)

For a = 0, the last integral becomes the digamma function; see iequét3.22 of
[AS64].

8 Relation tothe Stieltjes constants

Theay are can be used to express the Stieltjes constants andesisafwy re-expressing
the binomial coefficient with a power series, making use ofi&g Numbers. That is,
the polynomial expression is given by

<S;1> (s— !1 :nii{ ] (58)
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Figure 3:a(s) on the Imaginary Axis
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This figure shows the real and imaginary parta() along the imaginary axis. The
function appears to be oscillatory. Note that the seriesesion converges only with
great difficulty as one goes further out on the imaginary.axis
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Figure 4: Phase d(s) on the Complex Plane

This figure shows the phase afs) on the right half of the complex plane, running
along the real-axis from -2 to +62 and the imaginary axis fr@hto about +24. The
ribbing on the left is entirely due to numerical errors, as shms converge only with
great difficulty. The color scheme is such that black coresis to—T1t, green to 0 and

red to+11, on a smooth scale. Thus, the red-to-black color discoitiégs, correspond

to a phase change of2 Note that these terminate on zeros or poles; in this case, it
appears that there is only one polesat —1, and all others are zeros. In particular, it
appears that all of the zeros occur on the real number line.
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Where[ N | is the Stirling Number of the First Kind. Substituting in thbove, and

‘]
comparing to the standard definition of the Stieltjes cartsta

+Z

Vn (s—1)" (59)
shows thaty =1/2—ag=yand

w—hacur (e S 2 ([ 1]+ " ) (60)

Note that the Stirling Numbers can be written as a sum oveodyat of harmonic
numbers. That s,

b |k (61)
wherew(n,0) = 1 and
ST (A —k+m)  mia
K= ———H" k—1- 62
WK = 3 SEa g e wink-1-m) (62)

and the Harmonic numbel“.f;(lm> are given by
™ =Y — (63)
This finally allows us to write
:—ka;d—kz< w(n,k—1) — (k—1)w(n,k—2)) (64)

and so the factorial factors cancel, leaving only the sunr tive crazy product of
harmonics. XXX todo show some of the values of w, esp. aloeglthgonal. XXX

While on the topic of Umbral relations, the application ofviden’s divided differ-
ences to the Riemann zeta function leads to the curiousifumct

Qw-3 ('] )em+2-1 (65)

which has the curious properties th@atn) = ¢(n) for all integersn > 2. The pole
is absent:Q(1) = 1 andQ(n) = 0 Vintegersn < 0. The analytic structure dd(z) is
unclear.
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9 Conclusions

In the above, an expansion for the Riemann Zeta in terms dhthieg factorial was
stumbled upon. The falling factorial is a polynomialdrand takes part in many in-
teresting identities that suggest further exploratiorfabt, the polynomia(s— 1), as
well as(s— 1)" both fall into a class of functions with share many commorpprtes
with respect to differentiation, exponentiation, tratisla and the like, and are known
as Sheffer sequences. It seems that it could be interestipgtvide a description of
the Riemann zeta expanded in Sheffer sequences; that isdtthéw,, and provide a
general description of the expansion

S [ee]

()= s—1 S ;(_)nwnpn(s_ 1) (66)

where the polynomialpn(x) form a Sheffer sequence. This undertaking is interest-
ing because there may be one particular Sheffer sequeneéhfon the “generalized
Stieltjes constantsiy, take on a particularly simple or interesting form. This ieaby
suggested by the presentation given in this text, wherexpeession of the, is con-
siderably simpler than most presentations of the tradili@tieltjes constants. Such
work might be made doubly interesting by the fact the thedr$lweffer sequences
often shows up in the theory of lattice paths and tilings, ighe the representation of
the real numbers as p-adics or rationals is essentially @d ddfattice representation
(having a modular group symmetry).

The GKW operator also has an overt relationship to contiriteedions, and thus
to the modular group. it would certainly be interesting tplexe how the group struc-
ture manifests itself in the GKW operator, and, in turn, wité might imply for the
structure of the Riemann zeta.
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